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Preface 

Shell Solar Industries (SSI), formerly Siemens Solar Industries, has pursued the research and 
development of CuInSe2-based thin film PV technology since 1980.  In the 1980s SSI 
demonstrated a 14.1% efficient 3.4 cm2 active-area cell, unencapsulated integrated modules with 
aperture efficiencies of 11.2% on 940 cm2 and 9.1% on 3900 cm2, and an encapsulated module 
with 8.7% efficiency on 3883 cm2 (verified by NREL).  Since these early achievements, SSI has 
made outstanding progress in the initial commercialization of high performance thin film CIS 
technology.  Line yield has been increased from about 60% in 2000 to about 85% in 2002.  This 
major accomplishment supports attractive cost projections for CIS.  Recently, NREL confirmed a 
champion 12.8 percent aperture area conversion efficiency for a large area (3626 cm2) CIS 
module.  Other than definition of the aperture area, this module is simply one module from the 
upper end of the production distribution for standard modules.  Prerequisites for commitment to 
large-scale commercialization have been demonstrated at successive levels of CIS production.  
Remaining R&D challenges are to scale the processes to even larger areas, to reach higher 
production capacity, to demonstrate in-service durability over longer times, and to advance the 
fundamental understanding of CIS-based materials and devices with the goal of improvements 
for future products.  SSI's thin-film CIS technology is poised to make very significant 
contributions to DOE/NREL/NCPV long-term goals - higher volume, lower cost commercial 
products.   

SSI responded to the August 7, 2000 solicitation titled “PV MANUFACTURING R&D—IN-
LINE DIAGNOSTICS AND INTELLIGENT PROCESSING IN MANUFACTURING SCALE-
UP" for DOE funding for Fiscal Years 2001, 2002, and 2003. Shell Solar industries (SSI) 
received a letter from NREL on May 8, 2002 conditionally authorizing limited costs incurred on 
or after December 1, 2001 in anticipation of award of this subcontract.  This incrementally 
funded three phase subcontract was executed August 2nd, 2002 with the period of performance 
for the first phase ending April 30, 2003.  SSI requested a six months no cost extension for Phase 
1 because of circumstances that were not favorable for completion of effort.  SSI received a no 
cost extension to the period of performance through October 31, 2003.  In August, 2003, SSI and 
NREL began discussions of an updated statement of work for the three phases of this 
subcontract.  A revised statement of work is now being negotiated.  This document reports on 
progress for pre-contract activities and Phase 1. 
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Summary 

Compared to traditional wafer-based crystalline silicon technologies, monolithic integration of 
thin film solar cells can lead to products of comparable performance but with significant 
manufacturing advantages: lower consumption of direct and indirect materials, fewer processing 
steps and easier automation.  Monolithic integration is required to achieve these advantages since 
this eliminates multiple process steps and handling operations during module assembly.  The 
basic module elements for all thin-film technologies (alloys of amorphous silicon, cadmium 
telluride and CIS) are the same; the module elements are a circuit-glass/cover-glass laminate, a 
frame, and a junction box.  The basic circuit elements are also very similar; they each have a 
base electrode, an absorber, a junction, a top electrode and three patterning steps for monolithic 
integration.  While the details of these module elements or equivalent module elements differ, 
the basic cost structures are very similar on an area-related basis.  Since the cost per unit area is 
similar, the cost per watt is inversely proportional to the module efficiency.  CIS cells and 
monolithically integrated modules have demonstrated the highest efficiencies of any candidate 
thin-film technologies; therefore, CIS is expected to have the lowest manufacturing cost/watt. 

The objective of this subcontract is to continue advancement of SSI’s Copper Indium Diselenide 
(CIS) technology through development and implementation of:  

• High-throughput CIS absorber formation reactors 

• An XRF measurement system 

• A bar code scribing system 

• A high capacity ZnO monitoring system 

• A high capacity continuous light source simulator 

• Integrated manufacturing infrastructure including Statistical Process Control (SPC), 
Manufacturing Execution Systems (MES) and intelligent processing functions 

These activities will open up present production bottlenecks thereby allowing SSI to exercise the 
overall process at higher production rates and will lay the groundwork for evaluation of near-
term and long-term manufacturing scale-up.  Three tasks were defined for Phase I work. 

Task 1, “Equipment Development – Reactor Design Specification” consisted of work on CIS 
absorber formation reactors and bar code scribing equipment.  The goal of absorber formation 
reactor work was to investigate conceptual designs for high-throughput CIS reactors and provide 
design specifications for the first generation of these reactors.  The importance of reactor design 
to the CIS formation process was demonstrated when first scaling from a baseline process in 
reactors for small palates to a large area reactor.  SSI demonstrated that lower performance for 
large circuit plates was due to differences in absorber layer properties that were due to 
differences in the materials of construction and the physical design of the large reactor.  As a 
result of these studies, a new large area reactor designed and built that demonstrated circuit plate 
performance comprable to the performance of the small area reactors.  For this subcontract work, 
three tasks were identified to accomplish the absorber formation reactor work: Modeling, 
Mockup and Vendor Search.   
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Modeling work was pursued with the University of Florida to support reactor design and vendor 
search activities.  Results indicated that alternative insulator approaches can be implemented for 
some subsections of existing reactors and can be effective for insulating both heater and plate 
areas for future reactors.   

The goal of the mockup task was to demonstrate that large area plates, nominally 2 by 5 ft., 
could be heated without warping and to begin exploring the achievable thermal uniformity for 
various reactor and plate configurations and ramp rates.  The mockup consisted of a metal 
simulation of the reactor that was placed in a large industrial furnace.  Plate temperature 
variations ranged from minimal to significant with increasing plate load.  Warping ranged from 
minimal to significant with increasing plate load for higher cooldown rates.  Repeated mockup 
runs indicated that a slower cooldown does not necessarily avoid warping without improvements 
in thermal uniformity that could not be implemented in the mockup.   

Specifications for an absorber formation reactor were defined and a vendor selected in April 
2003.  This task required more time than expected due to the need for multiple specification and 
vendor response iterations.  These iterations were required because no vendor had previous 
experience directly applicable to SSI’s large plate requirements or would commit to any thermal 
uniformity specification for their proposed designs.  Therefore, the responsibility for thermal 
uniformity became solely SSI’s responsibility.  A vendor design could have accepted with no 
guarantee of success or could have defined the design approach for implementation by a vendor, 
again with no guarantee of success from the vendor.  Based on discussions with equipment 
vendors, alternative geometries for higher capacity and improved thermal uniformity are possible 
by emphasizing forced convection or radiative heating; however, no potential vendors would 
commit to achieving any level of thermal uniformity for these options.  This does not preclude 
future reactor advances, even dramatic advances, since capital cost does not necessarily scale 
with design complexity or reactor capacity.   

Without a commitment to any thermal uniformity specification, SSI began meetings with a 
selected vendor to finalize a jointly developed design that would meet immediate requirements, 
about 25 plates per run.  Internal documentation required to procure the system was submitted; 
however, approval from the financial department was not obtained.  In October, the equipment 
vendor was authorized to begin the first phase of work with a hold on further work.   

The majority of the bar code scribing equipment subcontract work occurred during the preaward 
timeframe.  Subcontract activities addressed implementation of laser-scribed barcodes on glass 
substrates and the requirements for reading these barcodes.  An additional goal was to provide 
high quality data for the integrated manufacturing infrastructure task.  Using barcode scribing 
has improved production productivity; bar code reading has proven to be easier, faster and more 
accurate than manual reading of hand scribed serial numbers.  Process data ambiguity due to 
duplicate and missing serial numbers has been practically eliminated.  Engineering productivity 
has also been improved since the frustrating and time consuming task of reconciling data with 
erroneously logged serial numbers has been practically eliminated.  The objectives of this 
subcontract do not directly address yield improvements; however, very significant yield 
improvements were obtained by implementing laser bar code scribing and thereby minimizing 
breakage associated with hand scribed serial numbers. 
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Task 2 was the implementation of X-ray Florescence (XRF) as a deposition feedback technique 
to increase capacity by increasing the throughput of existing equipment.  An additional goal was 
to provide high quality data for the integrated manufacturing infrastructure task.  Precursor 
sputtering diagnostics characterize and allow control of absorber thickness and the Cu/(In+Ga) 
ratio (CIG ratio), which are critical parameters in CIS production.  Prior to this subcontract, this 
feedback was based on a modified quartz crystal technique that required up to 40% of available 
production time.  Implementation of XRF decreased the time used for diagnostics to less than 
10% of available production time.  The XRF measurement methods were implemented on leased 
equipment while waiting for late delivery of specified equipment.  Development work allowed 
demonstration of the prerequisite measurement accuracy for each precursor layer.  Production 
procedures were developed for XRF based process control.  Automated sampling of multiple 
areas on a large plate was not possible with the leased equipment; however, leasing allowed 
process feedback development and use of in production.  The leased system requires additional 
operator time but goals for improved sputtering system utilization were met.   

Task 3, “Integrated Manufacturing – Design and Specification” consisted of subcontract work to 
evaluate and specify the requirements for integrated CIS manufacturing infrastructure including 
comprehensive statistical process control and diagnostics capabilities.  Preaward activities 
addressed structured qualification of new equipment with emphasis on the tasks necessary to 
pass equipment from engineering and procurement groups to the production and maintenance 
groups.  Discussions with management, engineers and technicians clearly identified the need to 
decrease the time that engineers and technicians were spending on production support and 
maintenance.  This would make their time available for experimentation and to support 
procurement and qualification of new equipment.  To this end, procedures were developed to 
guide the release of equipment to production.   

Manufacturing execution system (MES) activities for the integrated manufacturing task were 
based on working closely with SSI’s Information Services group and using consultants with 
MES experience to implement the majority of the work.  In addition to experience, the plan to 
use consultants was driven by the need to minimize workload on CIS personnel during all phases 
of this work.  Discussions between the CIS group, the Information Services group and the 
consultant led to a mission statement and goals and objectives for implementation of MES.  
Work to implement these tasks was expected to begin early in 2003.  However, this work was 
delayed while the consultant worked on other tasks including selection of previously unplanned 
upgrades in software for company wide Enterprise Resource Planning (ERP) requirements.  This 
work became a prerequisite for subcontract work since implementation of integrated 
manufacturing must be compatible with company wide plans for ERP.  Software for company 
wide ERP requirements was chosen that is compatible with existing databases and expected to 
improve data availability for improved decision making.   

Additional manpower for these tasks was added in October 2003.  A second consultant was 
chosen to implement these plans with the primary focus on integrating existing data sources and 
existing reports for statistical process control and production management.  System specific 
packages of information for reviews with the engineers responsible for production systems were 
generated to expand on the general specification.  With the goal of maximizing the effectiveness 
of working with the responsible engineers while minimizing their workload, each package 
combined detailed tables of proposed data IO for each process (procedure) and reference 
materials. 
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Introduction 

Overview 

Multinary Cu(In,Ga)(Se,S)2 absorbers (CIS-based absorbers) are promising candidates for 
reducing the cost of photovoltaics well below the cost of crystalline silicon.  CIS champion solar 
cells have exceeded 19% efficiency for devices fabricated at NREL [1].  Small area, fully 
integrated modules exceeding 13% in efficiency have been demonstrated by several groups [2].  
Record breaking efficiencies of over 12% for a commercial large area module have been verified 
by NREL [3].  Long-term outdoor stability has been demonstrated at NREL by ~30x30 cm and 
~30x120 cm SSI modules which have been in field-testing for over fourteen years.  Projections 
based on current processing indicate production costs well below the cost of crystalline 
silicon [2].  

Compared to traditional wafer-based crystalline silicon technologies, new thin film technologies 
yield products of comparable performance but with significant advantages in 
manufacturing [2, 4]: 

• Lower consumption of direct and indirect materials 
• Fewer processing steps 
• Easier automation 

Lower consumption of direct and indirect materials results in part from the thin-film structure for 
the semiconductor used to collect solar energy.  All three of these manufacturing advantages are 
in part due to an integrated, monolithic circuit design illustrated in Figure 1.  Monolithic 
integration eliminates multiple process steps that are otherwise required to handle individual 
wafers and assemble individual solar cells into the final product. 

Glass 
Moly 
CIS 

ZnO CdS 

 

Figure 1.  Structure of SSI’s monolithically integrated thin-film circuits. 
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A number of thin film photovoltaic technologies have been developed as alternatives to the 
traditional solar cells based on crystalline silicon wafers [2].  The technologies with the greatest 
potential to significantly reduce manufacturing costs are based on alloys of amorphous silicon 
(a-Si), cadmium telluride (CdTe), CIS, and film silicon (Si-film).  These photovoltaic thin film 
technologies have similar manufacturing costs per unit area since all share common elements of 
design and construction: 

• Deposition of typically three layers on a suitable substrate – window/electrode, 
absorber, and back electrode 

• Patterning to create monolithically integrated circuit plates  
• Encapsulation to construct modules 

Cost per watt is a more appropriate figure of merit than cost per unit area [2].  All thin film 
technologies have similar manufacturing costs per unit area since they all use similar or 
equivalent deposition, patterning, and encapsulation processes.  About half of the total module 
cost – material, labor, and overhead – originates in the encapsulation scheme which is for the 
most part independent of the thin film technology.  Costs for alternative encapsulation schemes 
are typically similar or even higher.  The average efficiency of large, ~30x120 cm modules in 
pilot production at Shell Solar is approximately 11%.  This performance is comparable to many 
modules based on crystalline silicon, and is substantially better than the performance reported for 
competing thin-film technologies.  The lowest cost per peak watt will result from the technology 
with the highest efficiency, CIS technology, since most thin film technologies have similar cost 
per unit area.    

SSI CIS Process 

Most terrestrial photovoltaic products today are designed to charge a 12-volt battery, however 
the output voltage of an individual solar cell is typically about 0.5 volts.  Wafer-based 
technologies build up the voltage by connecting individual solar cells in series.  In contrast, CIS 
circuits are fabricated monolithically (Figure 1); the interconnection is accomplished as part of 
the processing sequence to form the solar cell by alternately depositing a layer in the cell 
structure and patterning the layer using laser or mechanical scribing.   

The structure of a SSI CIS solar cell is shown in Figure 2.  The full process to form CIS circuit 
plates, including monolithic integration, is outlined in Figure 3.  This process starts with ordinary 
sodalime window glass, which is cleaned and an SiO2 barrier layer is deposited to control sodium 
diffusion and improve adhesion between the CIS and the molybdenum (Mo) base electrode.  The 
Mo base electrode is sputtered onto the substrate.  This is followed by the first patterning step 
(referred to as “P1”) required to create monolithically integrated circuit plates – laser scribing to 
cut an isolation scribe in the Mo electrode.  Copper, gallium and indium precursors to CIS 
formation are then deposited by sputtering.  Deposition of the precursors occurs sequentially 
from two targets in an in-line sputtering system, first from a copper-gallium alloy target (17 at% 
Ga) and then from a pure indium target.  CIS formation is accomplished by heating the 
precursors in H2Se and H2S to form the CIS absorber.  Beginning at room temperature, furnace 
temperature is ramped to around 400ºC for selenization via H2Se, and ramped again to around 
500ºC for subsequent sulfidation via H2S, followed by cool-down to room temperature.  This 
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deposition of copper and indium precursors followed by reaction to form CIS is often referred to 
as the two-stage process.  A very thin coating of cadmium sulfide (CdS) is deposited by chemical 
bath deposition (CBD).  This layer is often referred to as a “buffer” layer.  A second patterning 
step (P2) is performed by mechanical scribing through the CIS absorber to the Mo substrate 
thereby forming an interconnect via.  A transparent contact is made by chemical vapor 
deposition (CVD) of zinc oxide (ZnO).  This layer is often referred to as a “window layer” or a 
transparent conducting oxide (TCO).  Simultaneously, ZnO is deposited on the exposed part of 
the Mo substrate in the interconnect via and thereby connects the Mo and ZnO electrodes of 
adjacent cells.  A third and final patterning step (P3) is performed by mechanical scribing 
through the ZnO and CIS absorber to isolate adjacent cells. 

 

2.2 µm

1.2 µm

0.35 µm

2 mm

<0.05 µm

ZnO

CIS

Mo

Glass

CdS

  
Figure 2.  SSI’s CIS cell structure (not to scale). 
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Figure 3.  SSI CIS Circuit Processing Sequence. 
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The CIS-based absorber referred to in this report is composed of the ternary compound CuInSe2 
combined with sulfur and gallium to form the multinary compound Cu(In,Ga)(S,Se)2.  Gallium 
and sulfur are not uniformly distributed throughout the absorber but the concentrations are 
graded; hence, this structure is referred to as a “graded absorber.”  The graded absorber structure 
is a graded Cu(In,Ga)(Se,S)2 multinary with higher sulfur concentration at the front and back and 
higher Ga concentration at the back.  Elemental profiles typical of the SSI graded absorber 
structures are presented in Figure 4.  Efficiency, voltage, and adhesion improvements have been 
reported for the SSI graded absorber structure [4, 5, 6]. 

 

0 0.5 1 1.5
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Figure 4.  Typical elemental profile for the SSI graded absorber (SIMS from NREL). 

Figure 5 illustrates the module configuration used for prototypes and ST products during this 
subcontract period.  EVA is used to laminate circuit plates to a tempered cover glass and a 
Tedlar/polyester/Al/Tedlar (TPAT) backsheet provides a hermetic seal.  Aluminum extrusions 
are used to build frames for the modules.  In addition to providing a hermetic seal, the 
combination of the TPAT backsheet and the offset between the circuit plate and the frame 
provides electrical isolation from the frame.   

Aluminum FrameCover Glass

EVATedlar/Polyester/Al/Tedlar  

Figure 5.  Single circuit plate module configuration with a TPAT backsheet. 
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Subcontract Activities  

Background 

The U.S. Department of Energy (DOE), in cooperation with the U.S. Photovoltaics (PV) 
Industry, has the objective of retaining and enhancing U.S. leadership in the world market.  To 
further this objective, the Photovoltaic Manufacturing Technology (PVMaT) project was 
initiated in FY 1990 to form a partnership between DOE and the U.S. PV industry, assisting in 
the improvement of module manufacturing processes and in the substantial reduction of module 
manufacturing cost.  The goals of the project were to improve PV manufacturing processes and 
products for terrestrial applications, accelerate PV manufacturing cost reduction, lay the 
foundation for significantly increased production capacity, and assist the U.S. industry in 
retaining and enhancing its world leadership role in the commercial development and 
manufacture of terrestrial PV systems. The focus of the program emphasized research and 
development (R&D) manufacturing process issues.  

Four solicitations have been completed since inception of the PVMaT Project and a fifth 
solicitation is near completion.  These solicitations addressed, respectively: (1) process-specific 
R&D on PV module manufacturing (open only to companies that completed successfully a 
preliminary problem-definition phase; (2) generic research on problems of interest to all, or to a 
large portion of the PV industry; (3) process-specific R&D on PV module manufacturing; (4) 
product-driven PV manufacturing R&D addressing process-specific problems, as well as 
manufacturing improvements for balance-of-systems (BOS) components and system design 
improvements; and (5) PV module manufacturing technology and PV system and component 
technology.    

The FY2000 solicitation, “PV Manufacturing R&D—In-Line Diagnostics and Intelligent 
Processing in Manufacturing Scale-Up,” was a continuation of the PV Manufacturing R&D 
Project which focused on further accelerating the PVMaT achievements and was designed to be 
impartial to various PV technologies and manufacturing approaches.  The goals are to improve 
PV manufacturing processes and products while reducing costs and providing a technological 
foundation that supports significant manufacturing scale-up (100-MW level).  Letters of Interest 
under this solicitation were to address areas of work that could include, but were not be limited 
to, issues such as improvement of module manufacturing processes; system and system 
component packaging, system integration, manufacturing and assembly; product manufacturing 
flexibility; and balance-of-system development including storage and quality control.  The 
primary emphasis was on new and improved in-line diagnostics and monitoring with real-time 
feedback for optimal process control and increased yield in the fabrication of PV modules, 
systems, and other system components. 
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Objective 

The objective of this subcontract is to continue the advancement of CIS technology through the 
development and implementation of high-throughput CIS absorber formation reactors, an XRF 
measurement system, a bar code scribing system, a high capacity ZnO monitoring system, a high 
capacity continuous light source simulator, and implementation integrated manufacturing 
including Statistical Process Control (SPC), Manufacturing Execution System (MES), and 
Intelligent Processing functions.  This will open up present production bottlenecks thereby 
allowing Shell Solar to exercise the overall process at higher production rates and laying the 
groundwork for evaluation of near-term and long-term manufacturing scale-up.  

Scope Of Work 

The subcontract consists of three incrementally funded phases.  Plans for Phase I work were to: 

Task 1. - Investigate conceptual designs for high-throughput CIS absorber formation 
reactors and implement bar code scribing and circuit plate tracking  

Task 2 - Design, fabricate, and debug XRF measurements for in-line diagnostics and 
real-time monitoring of precursor sputtering as deposition feedback techniques 
for improved quality and higher throughput 

Task 3. - Evaluate and specify the requirements for an integrated CIS manufacturing 
infrastructure such as comprehensive diagnostics capabilities.  
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Technical Review 

Task 1:  Equipment Development – Reactor Design Specification 

Absorber Formation Reactor 

The multi-year reactor procurement tasks address implementation of the SSI absorber formation 
process in improved high capacity reactors.  This will open up a present production bottleneck 
and allow larger part sizes thereby allowing exercise of the overall process at higher production 
rates.   

Reactor Background 
SSI’s CIS processing facility produces nominally 1x4 ft. circuit plates for production and process 
R&D.  Full size 1x4 ft. circuit plates are used for SSI’s ST40, 40 W product.  Multiple smaller 
modules are also produced from 1x4 ft. circuit plates.  Most infrastructure, with the exception of 
absorber formation reactors, is compatible with larger circuit plates - up to nominally 2x5 ft.  
Overall capacity increases can be achieved by increasing the plate size that can be processed in 
the absorber formation reactors. 

Reviewing this approach in light of recent process development has led to the conclusion that 
plate size scale up may not be the only or best route to increasing capacity.  Production capacity 
increases have been achieved through process development to increase the number of plates 
processed in a reactor batch.  This process development has addressed tendencies toward 
increased warping and poorer adhesion for larger plate loads.  Increased capacity by stacking 
reactors one over another, using the floor space that would normally be required for one reactor, 
has also been demonstrated.  Higher power products can be fabricated using multiple circuit 
plates rather than larger plates; prototype modules using two 1x4 ft. circuit plates have been 
demonstrated.  In toto, the advantage of larger circuit plates may not be as great as expected prior 
to these developments.  Even so, increasing the plate size is an option that has potential value 
and was defined as a figure of merit to pursue with vendors for new reactors.  Vendors were 
asked to respond to a request for reactor designs combining:  

• Nominally 2x5 ft. circuit plates 

• Enough plates in a reactor run to achieve an increase in capacity over present designs 

• Demonstration or otherwise guaranteeing temperature uniformity adequate to 
implement the SSI process without warping the circuit plates 

The importance of reactor design to the CIS formation process was demonstrated when first 
scaling from a baseline process in small reactors to a reactor capable of processing large areas.  
Differences between a baseline process for relatively small circuit plates and the process 
executed in the first large area absorber formation reactor were responsible for differences in 
absorber layer properties and cell performance.  These differences were then related to 
differences in the materials of construction and the physical design of the large reactor.  As a 
result of these advances in understanding the influence of reactor design on performance, SSI 
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designed and built three generations of 1x4 ft. reactors based on a more direct scale-up of the 
baseline reactor.  Success with this development effort was demonstrated by comparable 
performance for baseline and large area circuit plates.  A consensus on new equipment 
requirements related to these studies was realized during joint meetings with engineering and 
procurement personnel: 

• Thermal requirements for the reactor as well as the parts were defined.   

• Requirements for the location and orientation of plates were defined. 

• Limitations on the materials of construction for use in contact with the reactant gasses 
at high temperatures were specified. 

• Limitations on the physical layout of the reactor were defined. 

Containment of toxic and flammable gasses, even in the event of system failure, was a design 
prerequisite for new reactors.  This primary consideration was addressed for two types of 
containment in three different large area reactor designs.  One approach achieved containment by 
surrounding the reaction vessel with a second nitrogen filled vessel.  The second approach 
achieved containment by dilution of the hazardous gasses with nitrogen from a ballast tank.  A 
consensus was reached that modified versions of either of the two types of containment may be 
viable for future systems.   

An additional figure of merit was system loading and unloading with the aid of “automation”.  
This could mean aids for operators when handling plates and groups of plates or full automation 
- mechanical systems that do not require operator assistance.   

 

Reactor Design And Specification  

Preaward Activities 
The majority of subcontract work began after execution of the subcontract rather than during the 
preaward timeframe.  During the preaward timeframe, the schedule for reactor procurement work 
was reviewed with the goal of accelerating procurement after subcontract award and minimizing 
risk.  In particular, completion of the “Reactor design selection” task was scheduled for the end 
of 2002.  Three tasks were identified to accomplish this work: Modeling, Mockup and Vendor 
Search.  Modeling work was pursued with University of Florida to support vendor search 
activities.  The goal of the mockup task was to demonstrate that large area plates could be heated 
without warping.  Three potential outside resources with the ability to heat large area plates were 
identified.  The vendor search task included generating a list of potential vendors from known 
vendors and new vendors found through the Thomas Register and the Internet.   

Preaward activities included beginning thermal modeling collaborations with Prof. Tim 
Anderson, University of Florida (UF), Chemical Engineering Department.  Themes for these 
collaborations were related to the UF interests in modeling CIS reactions.  Modeling reactors or 
modification of reactor furniture to achieve thermal uniformity and to avoid warping while 
increasing capacity was identified as the main theme.  Data including sketches of design options, 
previous modeling results, and previous reactor mockup results were sent to UF as an 
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introduction to SSI tasks for this subcontract.  Suku Kim was a graduate student with a thesis 
topic related to the reaction of precursors to form CIS.  During the preaward timeframe, Suku 
Kim started work on modeling the basic performance of insulator designs with unique potential 
for use in new reactors.  The goal of this work was to gain a general understanding of the 
performance of these insulators and in turn allow consideration of new reactor design options.  
Preaward activities for this task also included sketching potential reactor designs and outlining 
requirements for new reactor systems.  

A definition of the figures of merit for absorber formation reactors was completed during the 
preaward timeframe.  The three tasks identified to acceleration reactor procurement, Modeling, 
Mockup and Vendor search, continued with subcontract award.   

Modeling 
Modeling the basic performance of insulator designs that may be used for new reactors was 
pursued with UF.  Quartz is one material that can be in contact with the reactants for CIS 
formation at high temperatures without corroding.  UF modeled insulator designs based on 
surrounding insulation or IR reflectors with quartz to achieve good insulation while 
simultaneously isolating the metallic portions of structures from the reactants.  Similar structures 
are used in many technologies from artificial hearts to annealing furnaces.  The following sketch, 
Figure 6, shows the basic construction.  Modeling focused on a design based on multiple thin 
stainless steel reflectors separated by quartz plates, quartz felt insulation, or vacuum.   

Quartz
Quartz felt,

quartz sheet, or
vacuum

Stainless steel
sheet or foil

 

Figure 6.  Sketch of a generic insulating structure. 

A report was received with initial results indicating that this insulator design is effective over a 
broad temperature range.  The insulator design is effective for heaters operating up to 1000°C 
and effective at the temperature of circuit plates, ~500°C.  Additional modeling results for 
minimal insulation were requested to have a more direct comparison with the insulating 
approach for some subsections of existing reactors.  Combined results of UF modeling indicated 
that dramatic improvements in insulating properties are possible.  The approach modeled can be 
applied to some subsections of existing reactors and can be effective for insulating both heater 
and plate areas in future reactors. 

The possibility of interacting with a group at Sandia to model reactors was pursued. “The 
DAKOTA Project: Large-scale Engineering Optimization and Uncertainty Analysis” modeled 
relatively small multi-wafer low-pressure chemical-vapor-deposition (LPCVD) reactors that are 
widely used in the microelectronics industry [7].  This experience and the computer modeling 
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tools used for this analysis were potentially applicable to SSI’s large area reactor needs.  A 
relatively detailed discussion of SSI’s needs and the potential value of similar modeling were 
sent to Sandia representatives.  Review of this material indicated promise for modeling work.  
However, SSI’s contract with NREL precluded working with Sandia since Sandia and NREL are 
at least partly funded from a common source.   Modeling options were also discussed with each 
potential vendor for reactor procurement.   

Mockup 
The goal of the mockup task was to demonstrate that large area plates, nominally 2 by 5 ft., can 
be heated without warping and to begin exploring the achievable thermal uniformity for various 
reactor and plate configurations.  Dimensional changes during thermal processing are observed; 
therefore, mockup efforts included characterizing dimensional changes for large substrates.  
Reactor walls and internal structures for holding circuit plates were simulated in metal.  This 
mockup was then placed in a large industrial furnace for heating.  The mockup did not have the 
advantage of multiple heater zones as in production reactors.  On the other hand, the mockup did 
not have some of the problem areas of a real reactor.   

An adequately large furnace within driving distance was found for the mockup work.  The 
interior dimensions of the furnace are 5 ft. by 5 ft. by 15 ft. (Figure 7).  Heat is provided by two 
gas jets in the front bottom left of the furnace and the rear bottom right of the furnace.  Thus, air 
tends to swirl around in the furnace.  The temperature uniformity achieved in this furnace 
combined with the simulated reactor walls was expected to allow for adequate testing.   

 

Figure 7.  Furnace for reactor mockup work. 
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Figure 8 shows glass plates loaded in the bottom half of the simulated reactor.  Figure 9 shows 
the full simulated reactor ready for loading into the furnace.  

 

 

Figure 8.  Glass plates loaded in the bottom half of the simulated reactor. 

 

 

 

Figure 9.  Simulated reactor ready for loading into the furnace 
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Multiple mockup runs were made varying the number of plates: 5, 21 and 41 plates.  Additional 
mockup runs were made varying the cooldown rate.  For the 21-plate load, temperature variation 
within the simulated load was similar to the temperature variation observed for 1x4 ft. plates in 
present reactors.  Temperature variations ranged from minimal to significant with increasing 
plate load.  Plate warping ranged from minimal to significant with increasing plate load for 
higher cooldown rates.  Repeated mockup runs with slower cooldown rates indicated that a 
slower cooldown does not necessarily avoid warping.   

Dimensional changes of circuit plates are produced by thermal exposure during normal CIS 
processing.  These small dimensional changes are not an issue if the separation of interconnect 
patterns in the Mo is consistent over a plate and predictable, i.e. if the dimensional changes are 
uniform.  Mockup efforts included characterizing dimensional changes for large substrates.  Test 
plates were made using standard molybdenum electrodes with laser-scribed patterns as 
references.  Offsets from the original pattern positions were measured after heating for various 
mockup loading conditions.  For each loading condition, offsets were measured for multiple 
plates and multiple positions on plates.  Results of these dimensional change measurements 
paralleled the plate warping results – variation from minimal to significant with increasing plate 
load.  Alignment or separation errors over the whole 2x5 plate with the exception of an 
approximately 1 inch boarder were measured as 0.002 inches and 0.004 inches for the 21 and 41 
plate runs respectively.  Dimensional changes followed the same trends as plate warping and 
should not be a problem if plate warping is minimal.   

Vendor Search and Reactor Procurement 
A list of about fifty potential equipment vendors for large area reactors was generated from 
known vendors and new vendors found through the Thomas Register and the Internet.  A 
statement of work (SOW), including a specification and terms and conditions, was outlined for 
group discussion, drafted, and consensus was reached on a final version for distribution to 
potential vendors.  Nondisclosure agreements were distributed to the potential vendors and the 
SOW was distributed.  SSI hosted visits by potential vendors, visited potential vendors and 
received proposals from a relatively small subset of the original list of potential vendors.   

The specification requested that vendors respond with a design approach and a commitment to 
thermal uniformity.  Guidelines supplied to the vendors for the required thermal uniformity were 
based on a range between the uniformity that SSI has achieved for ~1x4 ft. plates and better 
uniformity that, based on preliminary discussions with vendors, should be readily achievable for 
a symmetric part load.  However, no vendors had previous experience directly applicable to 
SSI’s large plate requirements.  Vendors in general had some applicable experience but typically 
experience with only some aspects of heating an asymmetric load of large plates.  No vendor was 
willing to define and commit to a thermal uniformity specification.  Vendors generally gave the 
reason for their inability to commit as the need to dedicate a large amount of time to the 
analytical engineering needed to fully consider appropriate designs.   

Most vendors proposed modeling potential design approaches using a third party.  Other vendors 
proposed in-house modeling but had minimal experience.  Outsourcing of the analytical 
engineering is typically required since most vendors have hardware design and assembly 
engineers rather than personnel with the analytical engineering capabilities needed to verify an 
appropriate approach.  All vendors would have been glad to build a system based on a SSI 
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hardware definition if they were not responsible for the design approach or success of the 
implementation.  Since no vendor committed to achieving any level of temperature uniformity, 
the responsibility for temperature uniformity became solely SSI’s responsibility.  SSI could 
accept a vendor design with no guarantee of success or define the design approach for 
implementation by a vendor, again with no guarantee of success from the vendor.   

Modeling results and discussions with vendors indicate that alternative geometries for very high 
capacity and improved thermal uniformity are possible based on emphasizing forced convection 
or radiative heating.  Some implementations may be long-term options for processing as many as 
100 plates per run.  Discussed and proposed design options ranged from inadequate to overly 
complex.  A system that will achieve good thermal uniformity for very high capacity is 
apparently possible but only with additional analytical engineering and probably corrections to 
the first implementation.  And again, all risk for success would be solely SSI’s risk.  For 
example, thermal uniformity might be achieved using directional IR heaters and using absorbing 
or reflecting rods between the plates to increase heating at the center of the stack of plates.   
Corrections to the first rod designs might be relatively easy but also probably inevitable.  When 
adding consideration of the enclosure, this design concept becomes complex and therefore risky.  
However, discussions with potential vendors indicated that the capital cost does not necessarily 
scale directly with the design complexity or the extent of required basic engineering.  Therefore, 
capital cost does not necessarily become unacceptably high for future very high capacity 
reactors.   

SSI requested that all potential vendors provide additional information since no vendor had 
previous experience directly applicable to SSI’s large plate requirements or would commit to any 
thermal uniformity specification.  The objective was to define a design that would meet SSI 
immediate requirements, about 25 plates per run.  Information was also requested regarding how 
the vendors would demonstrate capabilities during each stage of design and equipment 
fabrication and thereby minimize the risk for procurement of a viable production machine.  The 
additional information requested included: 

• Definition of the method to be used to obtain temperature uniformity 

• Definition of the theoretical or physical modeling with temperature profiling that 
would be used to demonstrate viability of the proposed design 

• Additional resources needed  

• Schedules 

• Costs 

SSI reviewed this information and defined additional design specific requirements for selected 
vendors.  These requirements were defined to:  

• Minimize the risk of inadequate temperature uniformity 

• Minimize the risk in realizing a viable system 

• Minimize the risk of major system failures  

• Maximize reliability by applying SSI experience to the definition of system details  
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System attributes that were considered included: 

• Number and geometry of heater zones 

• Reactor access hardware 

• Vacuum seal methods 

• Vacuum and gas flow equipment 

• Materials requirements 

• Circuit plate handling hardware 

• Reactor control systems and integration with existing systems 

• Specifics of safety systems 

• Software and hardware design approval hold points 

• Specifics of boats for two glass plate sizes 

A vendor for the absorber formation reactor was selected in April 2003 based on the response to 
this request.  In October, SSI authorized the equipment vendor to begin the first phase of work 
with a hold on further work.   

The defined configuration was a simple tube furnace similar in construction to conventional 
diffusion furnaces.  As seen in the following photograph of an existing furnace for 1x4-foot 
substrates, Figure 10, a group of substrates is loaded in a boat or carrier, placed into the tube, and 
processed as a batch.  Cooling in this reactor should be similar to cooling in the mockup.  Design 
features that were not simulated by the mockup were included in the equipment specification to 
improve thermal uniformity during heating. 

 

Figure 10. Tube furnace substrate loading.  
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The equipment vendor began design work on the absorber formation reactor with emphasis on 
heater options and constraints.  SSI and the equipment vendor met to discuss hardware design 
constraints that required modification of the original specification.  Tube size considerations 
imposed limitations on the practical length for heater zones.  The position of heater dead zones 
was also considered.   

The equipment vendor visited the heater fabricator with the goal of learning as much as possible 
about furnace fabrication and meeting SSI’s needs.  Discussions included the fabrication process, 
wiring, control, geometric constraints and heater geometry.  Discussions with the furnace vendor 
also included design options for the most appropriate approach to containment of toxic and 
flammable gasses in the event of tube failure.  The furnace vendor considered multiple hardware 
approaches, developed these approaches and provide preliminary drawings for review.   

Bar Code Scriber 

Bar code scribing and circuit plate tracking improving productivity and also provided high 
quality data for tasks related to integrated manufacturing infrastructure.  The majority of this 
subcontract work occurred during the preaward timeframe.  

Background 
Prior to implementing barcode scribing, individual substrates were tracked through each process 
steps based on a hand scribed serial number on the substrate.  The operator read the serial 
number and then filled in a form with the serial number and status of each part.  This 
rudimentary system was indispensable for yield tracking.  However, this tracking method is not 
scalable to high capacities and the accuracy of transactions was an issue even at low production 
rates.  Barcode labels can be used after circuit plate fabrication; however labels are compatible 
with circuit plate fabrication only after completion of all high temperature or wet processing.  

Implementation 
Subcontract activities addressed implementation of laser-scribed barcodes on glass substrates and 
the requirements for reading these barcodes.  Decisions on implementation options were made 
during a design analysis phase.  Minimization of additional operator tasks for part tracking at 
each process step was a major consideration.  Manual data entry and scanning operations were 
eliminated wherever appropriate.  A comprehensive solution was defined by surveying available 
barcode scribing and reading options for compatibility with SSI processing of coated glass 
circuit plates.   

Barcode scribing using a CO2 laser was selected based on discussions with potential vendors and 
test results using SSI substrates.  In addition, selection of the best equipment set for SSI’s needs 
included consideration of: machine and human readability, equipment durability for industrial 
use, cost of operation, the desired size of the area to be scribed, and the availability of a complete 
as possible equipment set with pre-integration hardware and software for scribing and scanning.  
Both a “barcode” and a large numeric serial number that is readable at arm’s length were 
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specified.  Figure 11 illustrates the corner of a circuit plate with both a readable serial number for 
humans and a 2-dimensional barcode for machines.   

A local system integrator accomplished fabrication and installation of the barcode scribing 
systems.  Barcode readers were placed in conjunction with production equipment at multiple 
sites throughout the production facility.   

Corner of
circuit plate

2-dimensional barcode
 

Figure 11.  Laser scribed readable serial number and a 2-dimensional barcode. 

Barcode scribing has improved production productivity; bar code reading has proven to be 
easier, faster and more accurate than manual reading of hand scribed serial numbers.  Process 
data ambiguity due to duplicate and missing serial numbers has been practically eliminated.  
Engineering productivity has also improved since the frustrating and time consuming task of 
reconciling data with erroneously logged serial numbers has been practically eliminated.  

The objectives of this subcontract do not directly address yield improvements; however, yield 
improvements were obtained through process development for equipment procured and 
implemented for this subcontract [8].  A study of yield loss due to breakage during the absorber 
formation process demonstrated that breakage associated with hand scribed serial numbers was 
one of the major causes of breakage.  Hand scribing serial numbers using a diamond scribe 
damages the glass in a way similar to the purposeful damage used to make a controlled break.  
Stresses induced by the thermal cycle during the absorber formation process would preferentially 
trigger glass breaking at the hand-scribed serial number.  The use of laser scribed bar codes 
reduced this kind of breakage by 88%. 
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Task 2:  Process Diagnostics – Precursors    

X-ray Florescence (XRF) as a deposition feedback technique was pursued to provide improved 
data quality and higher throughput.  Considerations for this work included: 

• Safety 

• Evaluation of wavelength versus energy dispersive signal analysis 

• Evaluation of in-line versus in-situ approaches 

• Measurement Idiosyncrasies related to SSI layered precursor structures 

• Ease of use and integration with SSI production protocols  

• Process quality  

• Cost  

• Productivity   

Work for this task included developing a conceptual design, developing specifications, procuring 
a system and qualifying the system for use by production.   

XRF Background 
SSI has demonstrated that precursor sputtering is a good choice for large scale production with 
appropriate: 

• Equipment  

• Process definition 

• Process diagnostics 

• Procedures 

• Maintenance  

• Training for operators and maintenance personnel 

• Qualification of source materials   

Precursor sputtering diagnostics characterize and lead to the control of the absorber thickness 
and the Cu/(In+Ga) ratio (CIG ratio), which are critical parameters in the production of high 
efficiency CIS devices.  Precursor deposition occurs sequentially from two targets in an in-line 
sputtering system, first from a copper-gallium alloy target and then from a pure indium target.  
Prior to this subcontract, the deposition uniformity and rate of each target was measured based 
on a modified quartz crystal technique.  Quartz crystals on a glass carrier were run through the 
sputtering system twice, the first pass for deposition of the copper-gallium film, and the second 
for deposition of the indium film.  The thickness of each layer was determined based on crystal 
resonant frequency differences before and after the depositions.   

A set of 10 crystals was distributed across a substrate to characterize the uniformity of deposition 
across the substrate width.  This was especially important since a shift in deposition uniformity 
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for either deposition can lead to regions of unacceptable CIG ratio even if the measurement of an 
average composition appears acceptable.  The procedure was executed at the beginning of each 
production run to set the deposition rates within specifications and executed again after the run.  
A model using this data and including the effects of changes in sputter rate with target age was 
the basis for production process control - the maximum duration for a run of substrates without 
additional measurements and when to change sputtering targets [9].   

SSI had previous experience with precursor measurements based on XRF analysis of small 
samples cut from the large substrates and then either directly measured or dissolved before 
measurement.  Dissolving samples before analysis avoided potential measurement ambiguities 
related to the sensitivity of XRF measurements to element mass, the nature of the layered 
structures, and the potential for change in the structure with time due to interdiffusion of the 
three precursors elements.  Previous XRF capabilities required cutting small samples from large 
production substrates, unacceptably long measurement turnaround time, and attention to the time 
between deposition and measurement.   

The quartz crystal based process control approach assured high reproducibly and yields for the 
precursor sputtering process.  However, implementation of the approach requires up to 40% of 
the potentially available production time!  Implementation of process control based on XRF 
measurements was proposed to decrease the time required for diagnostics.   

Implementation  
Delays in this work occurred due to the voluntary resignation of the responsible engineer.  
Engineering consultants, William Pope and later Robert Erickson, IPC Systems Engineering Inc., 
were hired to continue this work while finding a permanent replacement.     

The equipment vendor for this subcontract work could not meet the delivery schedule for the 
system as originally specified, which included an X-Y mechanical table.  To minimize the 
impact of delays, the vendor provided a leased unit without a mechanical table in early 
December 2003.  Automated sampling of multiple areas on a large plate was not possible with 
this system; however, renting allowed process development on similar equipment and use by 
production before delivery of the fully capable system.  Production use of the leased system 
required additional operator time but goals for improved machine utilization were met. 

As delivered, the system was incapable of replacing the quartz crystal based measurement 
method.  The following shortcoming were identified: 

• Inadequate precision and accuracy  

• No calibration algorithms for determining the individual thickness of indium and 
copper gallium alloy layers based on measurement of a stack of thin films 

• Inability to compensate for the background signal from glass   

Accuracy and Precision 
Automated measurements of the same spot on multi layered CIG structures were used as the 
basis for measurement stability tests.  Results for the copper gallium layer were on target (0.1% 
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off target) with very little variation (0.5% std. dev.).  However, results for the indium target were 
inadequate.  The indium measurements were off by 8.7% with high variation (16.1% std. dev.).  
The source of the problem was traced to overlap of the indium peak and background noise from 
the glass substrate.  As shown in Figure 12, the XRF signal peak for copper gallium is located in 
a region where there is relatively low emission from the glass substrate.  In contrast, the indium 
peak has lower signal strength and is located where the emission from the glass substrate is 
greatest.  Hence, the signal to noise ratio for indium measurements was poor. 

 

Cu- Ga Peak

Mo Peak
In Peak

Purple Region is Spectrum
For Glass Substrate

 

Figure 12.  XRF Spectrum of CIG Structure. 

 

Two adjustments were made to minimize the effects of this low signal to noise ratio.  First, the 
integration time for each measurement was doubled to improve counting statistics.  Second, 
software upgrades by the system vendor allowed compensation for background noise from the 
glass substrate.  Results for both the copper gallium and indium layers were on target (both 0.1% 
off target) with very little variation (respectively 0.1% and 0.4% std. dev.).   

Qualificaiton 
Feedback from the XRF measurements and knowledge of the deposition process is now the basis 
for computer based updates to process parameter set points.  This data processing is transparent 
to the operator.  A computer processes the XRF measurement data and then presents the data to 
the operator as appropriate changes in process parameters.  The operator is directed to make no 
changes, make a small adjustment to process parameters, or terminate production in the unlikely 
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event of system failure.  In addition, a chart of historic data is generated that allows long-term 
tracking of system capabilities. 

Interruption of part production was required for crystal-based process control.  For XRF based 
process control, production procedures have been developed that practically eliminate the time 
used for diagnostics instead of part production.  Production run duration has increased to the 
point that only maintenance, shield cleaning and target replacement tasks limit equipment 
utilization for part production.  Additional measurements without interruption of production also 
allows more immediate detection of special cause events, such as sputtering target or power 
supply failure,  that might otherwise erode yield,  

These results demonstrate that the XRF tool possesses the accuracy necessary for production 
process control of sputtered copper gallium and indium precursors.  Process control is 
implemented in a way that practically eliminates system time used for diagnostics rather than 
part production.  Presently, operators are being trained to use the XRF tool for production.   

 

Task 3:  Integrated Manufacturing – Design and Specification  

Background 
SSI has applied systematic research, development, production and business methodologies to a 
carefully planned substrate size and capacity scale-up of CIS-based thin-film technology.  To 
date, these systematic approaches, which are generally recognized as being appropriate for 
manufacturing businesses, have included SPC, Analysis of Variation, design of experiments, and 
the methodologies defined for sound business practices under ISO9000 guidelines.  SSI’s 
accomplishments utilizing these methodologies indicate extension to include Manufacturing 
Execution Systems (MES) as part of SSI’s implementation of an integrated manufacturing 
infrastructure. 

The Manufacturing Execution System Association International definition for MES is: 
“Manufacturing Execution Systems (MES) deliver information that enables the optimization of 
production activities from order launch to finished goods [10].  Using current and accurate data, 
MES guides, initiates, responds to, and reports on plant activities as they occur. The resulting 
rapid response to changing conditions, coupled with a focus on reducing non value-added 
activities, drives effective plant operations and processes.  MES improves the return on 
operational assets as well as on-time delivery, inventory turns, gross margin, and cash flow 
performance. MES provides mission-critical information about production activities across the 
enterprise and supply chain via bi-directional communications.” 

SSI’s multi-year objective is to implement MES and other aspects of an integrated 
manufacturing infrastructure to gain the near-term, intermediate timeframe and long-term 
enabling benefits.  During all phases of this subcontract, R&D will qualify, exercise and 
continually improve all aspects of integrated manufacturing for current production and for 
modeling of the technological foundation that will support significant manufacturing scale-up.   
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Preaward activities  
Preaward activities addressed structured qualification of new equipment with emphasis on the 
tasks necessary to pass equipment from engineering and procurement groups to the production 
and maintenance groups.   

Discussions with management, engineers and technicians clearly identified the need to decrease 
the time that engineers and technicians spend on production support and maintenance.  This 
would make their time available for experimentation and to support procurement and 
qualification of new equipment.  To this end, procedures were developed to guide the release of 
equipment to production. These procedures defined the following implementation and 
qualification tasks to release equipment to production, i.e. make the equipment ready for 
sustainable production with a more appropriate level of support from engineers and technicians: 

• Completion of Health, Safety and Environmental tasks including safety reviews and 
permitting 

• Completion of a test plan to demonstrate process capability and compatibility with all 
module processing steps 

• Release of safety procedures  

• Release of process documents for incorporation of the system into the overall CIS 
module process 

• Release equipment process documents  

• Release equipment maintenance documents  

• Training  of production personnel 

• Training of maintenance personnel 

• Documentation and retention of OEM documents  

• Documentation of calibration requirements and release of calibration procedures 

• Documentation of software backup requirements and release of backup procedures 

• Identification and procurement of spare parts 

These activities augmented previously defined approaches, such and well defined procedures and 
work instructions, to define and implement infrastructure that forms a solid foundation for 
systematic CIS production and substrate size and capacity scale-up.    

Data Warehouse 
Task execution plans were based on working closely with SSI’s Information Services group and 
using consultants with MES experience to implement the majority of the work.  In addition to 
experience, the plan to use consultants was driven by the need to minimize workload on CIS 
personnel during all phases of this work.  Meetings between the CIS group and Jeff Millard, 
Director of Information Services, were held to discuss the design and specification phase of this 
subcontract work.  A consultant, Vijay Bharti, The Comdyn Group, Inc., was selected as the 
primary consultant for this subcontract work.  Considerations for this selection included 
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manufacturing experience, experience with the infrastructure in SSI’s Information Services 
department and experience with production support at SSI.  The consultant drafted a mission 
statement and Goals and Objectives for review.   

Based on the draft mission statement, the design and specification phase of this subcontract work 
was discussed with the consultant and the manager of Information Services.  The consultant’s 
recommended approach was based on the following:  

• Our procedures and work instructions do a good job of documenting the CIS circuit and 
module process and all process data collection.  

• A standard MES software package would duplicate some existing functions in SSI’s 
part tracking, maintenance, and accounting systems.  

• The software interfaces to other parts of the company may change with potential 
changes in the main software package used company wide and thereby also change 
links from an MES package to information on sales, marketing, purchasing, accounting, 
etc. 

• The CIS groups spends a considerable amount of time merging part tracking data, 
process data, and module measurements.  Maintenance data from existing software that 
might be valuable for consideration is not easily compared to process results. 

• One functional definition of a MES package is one that predicts the impact on 
production of changes in operations.  However, a software package that doesn’t fit this 
definition of MES would be a better fit to SSI’s needs for “integrated manufacturing.” - 
a package described by the consultant as “directed analysis.”  Coining the term 
“Software for Integrated Manufacturing Infrastructure” (SIMI) for this directed analysis 
software, goals for the SIMI software were defined: 

• Integrate data from multiple sources for standard reports 

• Include these standard reports in CIS process documentation  

• Include user instruction for SIMI software in CIS documentation  

• Integrate and release SIMI software 

• Make process data available in a “data warehouse”  

• Make data from maintenance software available in a “data warehouse”  

• Make engineering comments on data available in a “data warehouse”  

• Facilitate “directed analysis” of the data warehouse for process analysis and 
improvement 

The following diagram depicts the first cut at defining a statement of work for the SIMI software 
tasks.  
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Follow on subcontract work related to this task is “Task 6 Integrated Manufacturing –
Implementation”.  Work on this task was expected to begin early in 2003.  However, this work 
was delayed while the consultant worked on previously unplanned tasks including selection of 
software for company wide Enterprise Resource Planning (ERP) requirements.  This work was a 
prerequisite for subcontract work since implementation of integrated manufacturing must be 
compatible with company wide plans for ERP.  Software for company wide ERP requirements 
was chosen based on compatible with existing databases and expectations for improved data 
availability intended for improved decision making.  Touted features of the software included the 
following abilities: 

• Turn large volumes of data into meaningful information 

• Identify and consolidate various data sources and supporting information  

• Report on the data in intuitive formats 

• Applicability to many business functions 

• Extensible to new business functions 

Additional manpower for these tasks was added in October because of the consultant’s 
continuing high workload for company wide rather than subcontract tasks.  The consultant would 
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continue to be involved with this subcontract work; particularly with prerequisite work for 
company wide ERP requirements.  A second consultant, John Andleman JSA Software, Inc. was 
chosen to implement these plans based on his manufacturing experience, experience with the 
infrastructure in SSI’s Information Services department and experience with production support.   

The second consultant advanced previous task definitions to a specification for the 
implementation of SIMI and presented his work to SSI.  The attached diagram, Figure 13, is an 
overview of this specification.  The core of this specification is the SIMI Transactional Database 
that was derived from “data warehouse” software selected for company wide applications based 
on compatibility with existing databases and capabilities that improve data availability.  SIMI 
would integrate data from multiple sources including existing production and maintenance 
databases and data collected and stored as hard copy.  Hard copy data defined in procedures and 
work instructions does a good job of documenting the CIS circuit and module process and all 
process data collection.  Integrating these existing data sources and existing reports for SPC and 
production management would be the primary focus.  Real-time and off-line outputs from 
production and analytic systems would be included in planning and a near-term SIMI review by 
CIS engineering.   

Software specifications were defined and data warehouse data fields and field relationships were 
defined for all processes.  System specific packages of information for reviews with the 
responsible engineers for production systems were generated to expand on the general 
specification.  The goal was to maximize the effectiveness of working with the responsible 
engineers while minimizing their workload for these efforts.  Each package combined detailed 
tables of proposed data IO for each process (procedure) and reference materials.   
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Figure 13.  SIMI software overview. 



 26

Conclusions 

Phase 1 tasks are complete with the exception of receipt of equipment.  The following 
summarizes subcontract accomplishments. 

Task 1. – High-throughput CIS absorber formation reactor 

Results of modeling work pursued with University of Florida indicate that alternative 
insulator approaches can dramatically improve insulating properties for some subsections 
of existing reactors and can be effective for insulating both heater and plate areas for 
future reactors.   

Simulated absorber formation runs in a reactor mockup demonstrated temperature 
variations from minimal to significant with increasing plate load.  Plate warping varied 
from minimal to significant with increasing plate load for higher cooldown rates.  
Repeated mockup runs indicated that a slower cooldown does not necessarily avoid 
warping.   Dimensional changes follow the same trends as plate warping and should not 
be a problem if plate warping is minimal. 

Specifications for an absorber formation reactor were defined.  This task required more 
time than expected because no vendor had previous experience directly applicable to 
SSI’s large plate requirements or would commit to any thermal uniformity specification.  

Alternative geometries for higher capacity and improved thermal uniformity are possible 
based on emphasizing forced convection or radiative heating.   Since no vendor would 
commit at any level of scale up or to any technological approach, all risk for success 
became solely SSI’s risk.  However, this does not preclude future reactor advances, even 
dramatic advances, since capital cost does not necessarily scale with the design 
complexity or capacity.   

SSI selected a vendor that would meet SSI immediate requirements, about 25 plates per 
run, in April 2003 and submitted the internal documentation required to procure the 
system.  In October, SSI authorized the equipment vendor to begin the first phase of 
work.   

 

Task 1. – Laser bar code scribing  

Laser bar code scribing and reading equipment was procured and implemented.   

Laser bar code scribing has proven to be easier, faster and more accurate than hand 
scribing serial numbers.  Both production and engineering productivity have been 
improved.   

Laser bar code scribing also significantly improved yield by minimizing breakage 
associated with hand scribed serial numbers. 
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Task 2 - XRF process control 

SSI implemented XRF measurement methods on leased equipment while waiting for 
delivery of specified equipment.  Leasing has allowed process development and use by 
production.  

Methods were developed to achieve the prerequisite measurement accuracy for each 
precursor layer.   

Production procedures have been developed for XRF based process control that 
practically eliminates system time used for diagnostics instead of part production.   

 

Task 3, “Integrated Manufacturing – Design and Specification”  

Procedures for structured qualification of new equipment were developed and 
implemented. 

The CIS group, the Information Services group and a consultant jointly defined a mission 
statement, goals and objectives for implementation of MES.  

Follow up work was delayed while the consultant worked on selection of software for 
company wide Enterprise Resource Planning (ERP), which was a prerequisite for 
subcontract work.  A second consultant was chosen to implement plans with the primary 
focus on integrating existing data sources and existing reports for SPC and production 
management.   

Software specifications were defined and data warehouse data fields and field 
relationships were defined for all processes.   

System specific packages of information for reviews with the responsible engineers for 
production systems were generated to expand on the general specification.   
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